Entraînement en autonomie n°4 - Spé Maths 1^{re}

▶ Exercice n°1

Dériver la fonction f dans les cas suivants :

1.
$$f$$
 définie sur $]0$; $+\infty[$ par $f(x)=5x^3-\frac{4}{x}$
2. f définie sur $\mathbb{R}-\{-2\}$ par $f(x)=\frac{5}{3+6x}$

2.
$$f$$
 définie sur $\mathbb{R} - \{-2\}$ par $f(x) = \frac{5}{3+6x}$

3.
$$f$$
 définie sur $]0$; $+\infty[$ par $f(x) = 3x \times (5 + \sqrt{x})$

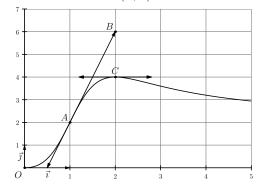
▶ Exercice n°2

Soit f la fonction définie sur $\mathbb{R}-\{-1\}$ par $f(x)=\frac{3x^2-5x+1}{x+1}$ et C_f sa courbe dans un repère. Déterminer les coordonnées des points A et B de la courbe C_f où la tangente admet un coefficient directeur égal à 2 et donner une équation des tangentes en A et B.

▶ Exercice n°3

Dans le graphique ci-dessous figure la courbe représentative d'une fonction f définie et dérivable sur [0; 5]. On sait de plus que :

- la courbe passe par le point C de coordonnées (2; 4) et la tangente à la courbe en ce point est horizontale;
- la courbe passe par le point A de coordonnées (1;2) et la tangente à la courbe en ce point passe par le point B de coordonnées (2; 6).



- 1. Déterminer d'après le graphique les valeurs de f'(2) et f'(1). (on justifiera ses réponses)
- 2. Soit g la fonction définie sur]0; 5] par $g(x) = \frac{f(x)}{x}$.
 - a) Pour tout x dans [0; 5], exprimer g'(x) en fonction de x, f(x) et f'(x).
 - b) En déduire la valeur de q'(1).
 - c) Déterminer une équation de la tangente à la courbe représentative de la fonction g au point d'abscisse 1.