
Entraînement en autonomie n°3 - Spé Maths 1^{re}

► Exercice n°1

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 6x 5$ et C_f sa courbe dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - a) f est-elle paire, impaire, ni l'une ni l'autre?
 - b) La courbe C_f coupe-t-elle l'axe des abscisses? Si oui, préciser les abscisses des points d'intersection avec l'axe des abscisses.
 - c) L'affirmation « pour tout x, on a f(x) < 4 » est-elle vraie ou fausse? (on justifiera sa réponse par un calcul)
- 2. Soit g la fonction définie sur $]1; +\infty[$ par $g(x) = \frac{x+5}{x-1}$ et C_g sa courbe dans le repère $\left(O,\vec{i},\vec{j}\right)$.
 - a) Déterminer si 1 admet ou non des antécédents par g. (on justifiera sa réponse par un calcul)
 - b) Montrer que, pour tout x > 1, on a $f(x) g(x) = \frac{x(-x^2 + 7x 12)}{(x 1)}$.
 - c) En déduire la position relative de C_f et C_g sur]1; $+\infty$ [. (on justifiera sa réponse à l'aide d'un tableau de signes)

▶ Exercice n°2

Sur le graphique ci-contre figure la représentation graphique d'une fonction f de la forme $f(x) = r \sin(\omega x + \varphi)$ avec $\varphi \in \left[0; \frac{\pi}{2}\right]$.

- 1. En s'inspirant de la méthode vue à l'exercice 7, déterminer les valeurs exactes de r, ω et φ . (les résultats devront être justifiés)
- 2. En déduire, par le calcul, la valeur exacte de $f\left(\frac{\pi}{4}\right)$.