Correction Entraînement en autonomie n°2 - Spé Maths 1^{re}

▶ Exercice n°1

$$(\cos x)^2 + (\sin x)^2 = 1 \Leftrightarrow (\cos x)^2 + \left(\frac{\sqrt{7}}{4}\right)^2 = 1 \Leftrightarrow (\cos x)^2 + \frac{7}{16} = 1 \Leftrightarrow (\cos x)^2 = \frac{9}{16} \Leftrightarrow \cos x = \frac{3}{4} \text{ ou } -\frac{3}{4}.$$

Sur $\left[\frac{\pi}{2};\pi\right]$, le cosinus doit être négatif. On a donc $\cos x=-\frac{3}{4}$.

► Exercice n°2

- $\cos(3\pi x) = \cos(\pi x)$ car la mesure principale de 3π est π , donc $\cos(3\pi x) = \cos(\pi x) = -\cos x$
- $\bullet \sin\left(\frac{\pi}{2} + x\right) = \cos x$
- $\cos(2\pi x) = \cos(-x)$ car effectuer un tour complet ne change pas la valeur du cosinus, donc $\cos(2\pi x) =$ $\cos(-x) = \cos x$.

On en déduit que $A(x) = -\cos x + \cos x + \cos x = \cos x$

► Exercice n°3

En posant
$$X = \cos x$$
, l'équation devient $2X^2 - 3X + 1 = 0$: $\Delta = 1$; $X_1 = \frac{3-1}{4} = \frac{1}{2}$; $X_2 = \frac{3+1}{4} = 1$.

$$2(\cos x)^2 + 1 = 3\cos x$$
 équivaut donc à $\cos x = \frac{1}{2}$ ou $\cos x = 1$:

$$\cos x = \frac{1}{2}$$
 équivaut à $x = \frac{\pi}{3} + 2k\pi$ ou $x = -\frac{\pi}{3} + 2k\pi$. $\cos x = 1$ équivaut à $x = 0 + 2k\pi$

Finalement, on a
$$S=\left\{\frac{\pi}{3}+2k\pi;-\frac{\pi}{3}+2k\pi;0+2k\pi\right\}$$
 $(k\in\mathbb{Z})$

▶ Exercice n°4

1. a)
$$x = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$$
.

b) On doit avoir
$$2y + \frac{\pi}{6} = \pi$$
. D'où $2y = \frac{5\pi}{6}$ et $y = \frac{5\pi}{12}$

c)
$$z = \frac{\pi}{2} - \frac{5\pi}{12} = \frac{\pi}{12}$$
.

- 2. a) Dans le triangle rectangle AIE, on a $AE^2 = AI^2 + IE^2 \Leftrightarrow 4 = 1 + IE^2$. On en déduit que $IE = \sqrt{3}$ et donc que $HE = 2 - \sqrt{3}$.
 - b) Dans le triangle rectangle DHE, on a $DE^2 = DH^2 + HE^2 = 1^2 + (2 \sqrt{3})^2 = 1 + 4 4\sqrt{3} + 3 = 8 4\sqrt{3}$. On a bien $DE = \sqrt{8 - 4\sqrt{3}}$.
- 3. Dans le triangle rectangle DHE, on a $\sin z = \frac{HE}{DE}$. On en déduit que $\sin\left(\frac{\pi}{12}\right) = \frac{2-\sqrt{3}}{\sqrt{2}-4\sqrt{2}}$.