Suites numériques

► Exercice n°1

Soit (U_n) la suite définie par $U_n = \frac{2n}{n+3}$.

- 1. Calculer U_0 , U_3 et U_{n+1} .
- 2. Compléter le script python ci-dessous pour qu'il permette de calculer U_n après avoir entré n.

```
n=int(input("n=?"))
U=.....
print(U)
```

► Exercice n°2

Le script python ci-dessous permet de calculer le terme de rang n d'une suite (U_n) définie de façon explicite.

```
n=int(input("n=?"))
U=n/(n+1)
print(U)
```

- 1. Déterminer U_n en fonction de n.
- 2. Calculer U_9 et U_{n+1} .

► Exercice n°3

Soit (U_n) la suite définie par $U_{n+1} = 5 - 3U_n$ et $U_0 = 1$.

- 1. Calculer U_1 et U_2 .
- 2. Compléter le script python ci-dessous pour qu'il permette de calculer U_n après avoir entré n.

```
U=......
n=int(input("n=?"))
for i in range(n):
    U=......
print(U)
```

▶ Exercice n°4

Le script python ci-dessous permet de calculer le terme de rang n d'une suite (U_n) définie de façon récurrente.

```
U=2
n=int(input("n=?"))
for i in range(n):
U=4*U-3
print(U)
```

- 1. Exprimer U_{n+1} en fonction de U_n .
- 2. Calculer U_1 et U_2 .

▶ Exercice n°5

 (U_n) est la suite telle que $U_0 = 1$; $U_1 = \frac{1}{2}$; $U_2 = \frac{1}{3}$; $U_3 = \frac{1}{4}$; $U_4 = \frac{1}{5}$... Déterminer une formule qui donne U_n directement en fonction de n.

▶ Exercice n°6

 (U_n) est la suite telle que $U_0=1$; $U_1=2$; $U_2=5$; $U_3=10$; $U_4=17$... Déterminer une formule qui donne U_n directement en fonction de n.

► Exercice n°7

 (U_n) est la suite telle que $U_0=-5$; $U_1=7$; $U_2=19$; $U_3=31$; $U_4=43$... Déterminer une relation de récurrence entre U_{n+1} et U_n .

► Exercice n°8

 (U_n) est la suite telle que $U_0=\frac{1}{2}$; $U_1=-\frac{1}{4}$; $U_2=\frac{1}{8}$; $U_3=-\frac{1}{16}$; $U_4=\frac{1}{32}$... Déterminer une relation de récurrence entre U_{n+1} et U_n .

► Exercice n°9

Calculer, pour tout n, $U_{n+1} - U_n$ et donner le sens de variation de la suite (U_n) dans les cas suivants :

1.
$$U_n = 3 - 7n$$

2.
$$U_0 = 0$$
 et $U_{n+1} = U_n - \frac{1}{n+1}$

► Exercice n°10

Calculer, pour tout n, $\frac{U_{n+1}}{U_n}$ et donner le sens de variation de la suite (U_n) dans les cas suivants :

1.
$$U_n = \frac{2^n}{5}$$

$$2. \ U_n = \frac{2^{n+1}}{3^n}$$

► Exercice n°11

En utilisant les variations d'une fonction, étudier le sens de variation de la suite (U_n) dans les cas suivants :

$$1. \ U_n = n + n^2$$

2.
$$U_n = \frac{1-n}{n+2}$$

► Exercice n°12

En choisissant la méthode qui parait la plus adaptée, étudier le sens de variation de la suite (U_n) dans les cas suivants :

- 1. $U_n = 2 \times 5^n$
- 2. $U_n = (-3)^n$
- 3. $U_0 = -4$ et $U_{n+1} = U_n (U_n)^2$
- 4. $U_n = n^3$

▶ Exercice n°13

Soit (U_n) la suite arithmétique de premier terme $U_0 = 2$ et de raison r = 5.

- 1. Calculer U_2 et U_{13} .
- 2. Exprimer U_n en fonction de n.
- 3. Quel est le sens de variation de la suite (U_n) ?

► Exercice n°14

Soit (U_n) la suite arithmétique de raison r=3 telle que $U_4=25$. Calculer U_7 et U_0 .

▶ Exercice n°15

Soit (U_n) la suite arithmétique telle que $U_4 = 5$ et $U_{11} = 19$. Calculer sa raison r et son premier terme U_0 .

► Exercice n°16

Soit (U_n) la suite arithmétique telle que $U_2+U_3+U_4=15$ et $U_6=20$. Déterminer U_0 et la raison r.

► Exercice n°17

Déterminer si la suite (U_n) est arithmétique ou non dans les cas suivants :

- 1. $U_n = 2n 3$
- 2. $U_n = n^2$

► Exercice n°18

On place un capital $U_0 = 8000$ euros à 3 % par an avec **intérêts simples** (autrement dit, chaque année, on reçoit les mêmes intérêts égaux à 3 % du capital **initial**).

On note U_n le capital obtenu au bout de n années.

- 1. Quel est le montant des intérêts que rapporte ce placement chaque année?
- 2. Donner la nature et la raison de la suite (U_n) .
- 3. Exprimer U_n en fonction de n.

4. Calculer la valeur du capital au bout de 15 ans.

► Exercice n°19

Soit (U_n) la suite arithmétique de raison r=2 telle que $U_0=1$. Calculer $U_0+U_1+\cdots+U_{10}$ et $U_{20}+U_{21}+\cdots+U_{43}$.

► Exercice n°20

Existe-t'il un entier n > 3 tel que $1 + 2 + 3 + \cdots + n = 276$?

▶ Exercice n°21

Soit (U_n) la suite géométrique de premier terme $U_0 = 5$ et de raison q = 3.

- 1. Calculer U_2 et U_5 .
- 2. Exprimer U_n en fonction de n.
- 3. Quel est le sens de variation de la suite (U_n) ?

► Exercice n°22

Soit (U_n) la suite géométrique de premier terme $U_0 = 32$ et de raison $q = \frac{1}{2}$.

- 1. Calculer U_3 et U_6 .
- 2. Exprimer U_n en fonction de n.
- 3. Quel est le sens de variation de la suite (U_n) ?

► Exercice n°23

Soit (U_n) la suite géométrique de raison q=3 telle que $U_4=81$. Calculer U_0 , puis U_7 .

► Exercice n°24

Pour quelles valeurs de q la suite géométrique (U_n) de raison q vérifie t'elle $2U_2 = 3U_1 - U_0$ (avec $U_0 \neq 0$)?

► Exercice n°25

Déterminer si la suite (U_n) est géométrique ou non dans les cas suivants :

- 1. $U_n = -4 \times 5^n$.
- 2. $U_n = \frac{1}{2n+1}$.

► Exercice n°26

Une plaque de verre teintée est telle qu'un rayon lumineux qui la traverse perd 20 % de son intensité lumineuse et on fait traverser à un rayon lumineux d'intensité 50 cd une série de ces plaques de verre teintée.

On note $I_0 = 50$ et I_n l'intensité du rayon lumineux après le passage de n plaques.

1. Justifier que la suite (I_n) est géométrique et donner sa raison.

- 2. Exprimer I_n en fonction de n.
- 3. Calculer l'intensité du rayon lumineux après le passage de 4 plaques.
- 4. On cherche à déterminer à l'aide d'un script le plus petit nombre de plaques que le rayon lumineux doit franchir pour que son intensité devienne inférieure à 1 cd. Compléter la 3^e ligne du script python ci-dessous pour qu'il réponde à la question.

```
n=0
I=50
while .....:
I=0.8*I
n=n+1
print(n)
```

► Exercice n°27

On place un capital $U_0 = 8000$ euros à 3 % par an avec **intérêts composés** (autrement dit, chaque année, on reçoit des intérêts égaux à 3 % du capital de **l'année précédente**).

On note U_n le capital obtenu au bout de n années.

- 1. Comment passe-t-on de la valeur du capital d'une année à celle de l'année suivante ?
- 2. Donner la nature et la raison de la suite (U_n) .
- 3. Exprimer U_n en fonction de n.
- 4. Calculer la valeur du capital au bout de 8 ans.

► Exercice n°28

La période de désintégration d'un élément radioactif est le temps au bout duquel la masse d'un échantillon est divisée par 2 (cette période est constante).

On note U_0 la masse initiale de l'élément radioactif et U_n sa masse au bout de n périodes de désintégration.

- 1. Justifier que la suite (U_n) est géométrique et donner sa raison.
- 2. La période de désintégration du radium est de 1500 ans et on considère un échantillon de 5 g de radium.

On note $U_0=5$ et U_n la masse de l'échantillon au bout de n périodes de désintégration.

- a) Exprimer U_n en fonction de n.
- b) Calculer ce que sera la masse de l'échantillon dans 10500 ans.

► Exercice n°29

Soit (U_n) la suite géométrique de raison q=2 telle que $U_0=1$. Calculer $U_0+U_1+\cdots+U_{12}$ et $U_2+U_3+\cdots+U_{15}$.

► Exercice n°30

Un salarié a reçu deux propositions de salaire.

1. **Proposition 1 :** La première année, un salaire annuel de 20000 euros puis chaque année une augmentation fixe de 450 euros.

On pose $U_0 = 20000$, U_1 le salaire au bout d'un an, ..., U_n le salaire au bout de n années.

Préciser si (U_n) est arithmétique ou géométrique et exprimer U_n en fonction de n.

2. Proposition 2: La première année, un salaire annuel de 19900 euros puis chaque année une augmentation de 2%.

On pose $V_0=19900,\,V_1$ le salaire au bout d'un an, ..., V_n le salaire au bout de n années.

Préciser si (V_n) est arithmétique ou géométrique et exprimer V_n en fonction de n.

3. On cherche à écrire un script qui précise la proposition donnant le meilleur salaire annuel pour les 20 prochaines années. Compléter le script python cidessous pour qu'il réponde à la question.

```
for n in range(20):
    U=...........

V=.............

if .......:
    print("Pour n=",n," la proposition 1 est la meilleure")
    else:
        print("Pour n=",n," la proposition 2 est la meilleure")
```

► Exercice n°31

Le script python ci-dessous permet de calculer le terme de rang n d'une suite (U_n) définie de façon récurrente.

```
U=25
n=int(input("n? "))
for i in range(n):
U=0.9*U+2
print(U)
```

- 1. Exprimer U_{n+1} en fonction de U_n et donner la valeur de U_0 .
- 2. Calculer U_1 et U_2 .
- 3. On considère la suite (V_n) définie par $V_n = U_n 20$.

math.net - Licence CC

- a) Calculer V_0 , V_1 et V_2 .
- b) Montrer que (V_n) est une suite géométrique dont on donnera la raison.
- c) En déduire V_n , puis U_n en fonction de n.
- 4. Calculer U_{10} .
- 5. Calculer $V_0 + V_1 + \cdots + V_9$. En déduire $U_0 + U_1 + \cdots + U_9$

► Exercice n°32

Après son installation, un lundi matin, un aquarium contient 280 litres d'eau et des poissons.

Par évaporation, le volume d'eau dans l'aquarium diminue de $2\,\%$ par semaine et pour compenser cette évaporation, on ajoute chaque lundi matin, en une seule fois, 5 litres d'eau .

On note $U_0 = 280$, le volume initial d'eau en litres dans l'aquarium et ,pour tout entier naturel n supérieur ou égal à 1, on note U_n le volume d'eau dans l'aquarium, en litres, n semaines après son installation, immédiatement après l'ajout hebdomadaire des 5 litres d'eau.

- 1. Justifier que pour tout entier naturel n, $U_{n+1} = 0.98U_n + 5$.
- 2. On considère la suite (V_n) définie pour tout entier naturel n par $V_n = U_n 250$.
 - a) Justifier que (V_n) est une suite géométrique dont on donnera la raison et le premier terme V_0 .
 - b) En déduire V_n , puis U_n en fonction de n.
- 3. Compte tenu du nombre de poissons, cet aquarium doit contenir en permanence au minimum 240 litres d'eau. Justifier que cette préconisation est respectée.

► Exercice n°33

Au 1^{er} janvier 2024, la même entreprise comptait 1500 employés. Il est prévu que, pour toutes les années à venir, 20% de l'effectif au premier janvier partira à la retraite durant l'année et que pour ajuster ses effectifs, l'entreprise embauchera 200 jeunes dans l'année.

On note U_n , le nombre d'employés au premier janvier de l'année 2024 + n. On a ainsi $U_0 = 1500$.

- 1. Expliquer pourquoi on peut affirmer que, pour tout entier positif n, $U_{n+1} = 0.8 \times U_n + 200$.
- 2. Montrer que la suite (V_n) définie par $V_n = U_n 1000$ est une suite géométrique de raison 0,8 dont on précisera le premier terme V_0 .
- 3. Exprimer V_n en fonction de n et en déduire que, pour tout entier positif n, on a $U_n = 500 \times 0.8^n + 1000$.

- 4. Montrer que la suite (U_n) est décroissante.
- 5. Compléter le script python ci-dessous pour qu'il permette de déterminer l'année à partir de laquelle l'entreprise comptera moins de 1150 employés au premier janvier.

```
annee=2024
U=1500
while .....:
U=.....
annee=annee+1
print(annee)
```

▶ Exercice n°34

Un emprunteur contracte auprès d'une banque un prêt d'un montant de $120\,000$ euros au taux annuel de 1~%. On note :

- $U_0 = 120\,000$, le capital emprunté;
- A, l'annuité que doit rembourser chaque année l'emprunteur (qui dépend de la durée de remboursement et que l'on va chercher à déterminer);
- U_n , le capital qui reste à rembourser au bout de n années.

Quand on emprunte au taux de 1 %, la banque considère qu'elle doit recevoir, en plus de l'annuité de remboursement, des intérêts annuels égaux à 1 % de la somme qui reste à rembourser. Ces intérêts s'ajoutent au capital que doit rembourser l'emprunteur.

On a ainsi, pour tout entier positif n, $U_{n+1} = U_n - A + \frac{1}{100}U_n$. La suite (U_n) est donc définie par $U_0 = 120\,000$ et $U_{n+1} = 1,01U_n - A$.

- 1. Justifier que (V_n) définie par $V_n = U_n 100A$ est une suite géométrique dont on donnera la raison et le premier terme V_0 .
- 2. En déduire V_n , puis U_n en fonction de n et de A.
- 3. Déterminer A pour que le prêt soit remboursé en 15 ans, c'est à dire que $U_{15}=0$.

En déduire les mensualités que doit payer l'emprunteur à sa banque.

► Exercice n°35

Alice débute au jeu de fléchettes. Elle effectue des lancers successifs d'une fléchette. Lorqu'elle atteint la cible à un lancer, la probabilité qu'elle l'atteigne au lancer suivant est égale à $\frac{1}{3}$. Lorsqu'elle a manqué la cible à un lancer, la probabilité qu'elle la manque au lancer suivant est égale à $\frac{4}{5}$.

On suppose qu'au 1er lancer elle a autant de chances d'atteindre la cible que de la manquer. Pour tout entier n>0, on note A_n l'événement « Alice atteint la cible au n-ième coup » et B_n l'événement « Alice rate la cible au n-ième coup ». On pose $p_n=p\left(A_n\right)$.

2. Pour tout $n \ge 1$, on pose $U_n = p_n - \frac{3}{13}$. Montrer que (U_n) est une suite géométrique dont on donnera la raison et le premier terme U_1 .

3. En déduire U_n , puis p_n en fonction de n.

► Exercice n°36

En langage python, on peut affecter à une variable une liste de nombres en les encadrant par des crochets et en les séparant par des virgules. Exemple : U=[1,3,5,7]

On peut accéder à chaque élément de la liste de la façon suivante :

- le premier élément de la liste est U[0]
- le deuxième élément de la liste est U[1]
- etc.

Pour ajouter un nombre x à la liste U , on utilise l'instruction U.append(x).

On considère le script suivant :

```
U=[0,1]
n=2
while (n<=10):
    U.append(U[n-1]+U[n-2])
    print(U)
    n=n+1</pre>
```

On donne ci-dessous un extrait de ce qu'affiche ce script. Compléter les termes manquants :

```
[0, 1, 1]
[0, 1, 1, 2]
[0, 1, 1, 2, 3]
[0, 1, 1, 2, 3, 5]
[0, 1, 1, 2, 3, 5, .....]
[0, 1, 1, 2, 3, 5, .....]
[0, 1, 1, 2, 3, 5, .....]
[0, 1, 1, 2, 3, 5, .....]
[0, 1, 1, 2, 3, 5, .....]
[0, 1, 1, 2, 3, 5, .....]
```

Note : ce script affiche en fait les premiers termes de la suite de Fibonacci définie par $U_0=0,\,U_1=1$ et $U_{n+2}=U_{n+1}+U_n.$